Received 18 July 2006

Accepted 21 July 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Luiz Everson da Silva,^{a,b} Antonio Carlos Joussef,^a Sabine Foro^b and Boris Schmidt^b*

^aDepartamento de Química–UFSC, 88040-900 Florianópolis, SC, Brazil, and ^bClemens Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, D-64287 Darmstadt, Germany

Correspondence e-mail: foro@tu-darmstadt.de

Key indicators

Single-crystal X-ray study T = 299 KMean $\sigma(\text{C}-\text{C}) = 0.002 \text{ Å}$ Disorder in main residue R factor = 0.045 wR factor = 0.129 Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,2-Dimethyl-5-[(6-methylpyridin-2-ylamino)methylene]-1,3-dioxane-4,6-dione

In the title compound $C_{13}H_{14}N_2O_4$, the 1,3-dioxane-4,6-dione ring exhibits an envelope conformation. The amino H atom forms intra- and intermolecular contacts to carbonyl O atoms. One intermolecular $C-H\cdots O$ hydrogen bond is also observed.

Comment

Meldrum's acid and its derivatives serve as key intermediates for the synthesis of heterocyclic compounds with pharmacological activity (Chen, 1991; Delfourne *et al.*, 2000). Thus, the present X-ray crystallographic study of the title compound, (I), is part of our ongoing search for biological compounds based on 5-aminomethylene Meldrum's acid derivatives (da Silva *et al.*, 2005*a*,*b*, 2006).

In compound (I), the 1,3-dioxane-4,6-dione ring exhibits an envelope conformation with atom C9 in the flap position. The C1-N2-C6-C7 torsion angle and the C1-N2 and C6-C7 distances (Table 1) indicate electron delocalization between the two rings. The delocalization of the N-atom lone pair into the ring of Meldrum's acid may be favoured in the direction of

Figure 1

The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. Only one of the two disordered sets of H atoms of the methyl group C11 is shown.

© 2006 International Union of Crystallography All rights reserved

organic papers

one of the two available carbonyl groups, C8=O3 and C10=O4 (Blake et al., 2003).

The H atom of the NH group forms one intra- and one intermolecular hydrogen bond to the carbonyl atom O4. One intermolecular C-H···O hydrogen bond is also observed. Details of the hydrogen bonding are given in Table 2 and shown in Fig. 2.

Experimental

The title compound was prepared according to the literature procedure of Cannon et al. (2001) and was recrystallized from methanol (m.p. 434 K; yield 80%).

Z = 8

 $D_x = 1.297 \text{ Mg m}^{-3}$

Cu $K\alpha$ radiation

Needle, colourless

 $0.50\,\times\,0.10\,\times\,0.08~\mathrm{mm}$

3 standard reflections frequency: 120 min

intensity decay: 1.0%

Extinction coefficient: 0.0045 (3)

1901 reflections with $I > 2\sigma(I)$

 $\mu = 0.82 \text{ mm}^{-1}$

T = 299 (2) K

 $R_{\rm int} = 0.017$

 $\theta_{\rm max} = 66.9$

Crystal data

C13H14N2O4 $M_r = 262.26$ Monoclinic, C2/c a = 17.101 (1) Åb = 7.354 (1) Å c = 21.375(2) Å $\beta = 91.868 \ (9)^{\circ}$ V = 2686.7 (5) Å³

Data collection

\$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0788P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.045$	+ 0.4614P]
$wR(F^2) = 0.129$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} = 0.040$
2394 reflections	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
176 parameters	$\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	(Sheldrick, 1997)

Table 1

			0		
Selected	geometric	parameters	(A,	°)).

N1-C1	1.328 (2)	N2-C1	1.423 (2)
N1-C5	1.344 (2)	C6-C7	1.372 (2)
C1-N2-C6-C7	178.15 (15)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
N2-H2N···O4	0.86	2.15	2.7683 (18)	128
$N2-H2N\cdots O4^{i}$	0.86	2.46	3.2652 (18)	155
$C2-H2\cdots O4^{i}$	0.93	2.51	3.335 (2)	148

Symmetry code: (i) -x, -y + 2, -z.

The molecular packing of (I), with hydrogen bonds shown as dashed lines. Only one of the two disordered sets of H atoms of the methyl group C11 is shown.

All H atoms were included in the riding-model approximation, with N-H = 0.86 Å and C-H in the range 0.93–0.96 Å. Isotropic displacement parameters were set equal to $1.2U_{eq}$ (parent atom). The methyl group C11 is disordered and was refined with two equally occupied positions rotated from each other by 60° .

Data collection: CAD-4-PC Software (Enraf-Nonius, 1996); cell refinement: CAD-4-PC Software; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank Professor Dr Hartmut Fuess, Technische Universität Darmstadt, for diffractometer time.

References

Blake, A. J., McNab, H. & Withell, K. (2003). Acta Cryst. E59, 0841-0842.

- Cannon, D., Quesada, A., Quiroga, J., Insuasty, B., Abonia, R., Hernández, P., Cobo, J., Nogueras, M., Sánchez, A. & Low, J. N. (2001). Acta Cryst. E57, 0180-0181
- Chen, B. C. (1991). Heterocycles, 32, 529-597.
- Delfourne, E., Roubin, C. & Bastide, J. (2000). J. Org. Chem. 65, 5476-5479.
- Enraf-Nonius (1996). CAD-4-PC Software. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Silva, L. E. da, Joussef, A. C., Foro, S. & Schmidt, B. (2006). Acta Cryst. E62, o742–o743.
- Silva, L. E. da, Joussef, A. C., Nunes, R. J., Andrighetti-Fröhner, C. R. & Bortoluzzi, A. J. (2005a). Acta Cryst. E61, 04121-04122.
- Silva, L. E., Joussef, A. C., Nunes, R. J., Andrighetti-Fröhner, C. R. & Bortoluzzi, A. J. (2005b). Acta Cryst. E61, 04252-04253.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Stoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.