Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Luiz Everson da Silva, ${ }^{\text {a,b }}$
Antonio Carlos Joussef, ${ }^{\text {a }}$ Sabine Foro ${ }^{\text {b }}$ and Boris Schmidt ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Departamento de Química-UFSC, 88040-900 Florianópolis, SC, Brazil, and ${ }^{\text {b }}$ Clemens SchöpfInstitut für Organische Chemie und Biochemie, Technische Universität Darmstadt,
Petersenstrasse 22, D-64287 Darmstadt, Germany

Correspondence e-mail: foro@tu-darmstadt.de

Key indicators

Single-crystal X-ray study
$T=299 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
Disorder in main residue
R factor $=0.045$
$w R$ factor $=0.129$
Data-to-parameter ratio $=13.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2,2-Dimethyl-5-[(6-methylpyridin-2-ylamino)-methylene]-1,3-dioxane-4,6-dione

In the title compound $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$, the 1,3-dioxane-4,6-dione ring exhibits an envelope conformation. The amino H atom forms intra- and intermolecular contacts to carbonyl O atoms. One intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is also observed.

Comment

Meldrum's acid and its derivatives serve as key intermediates for the synthesis of heterocyclic compounds with pharmacological activity (Chen, 1991; Delfourne et al., 2000). Thus, the present X-ray crystallographic study of the title compound, (I), is part of our ongoing search for biological compounds based on 5-aminomethylene Meldrum's acid derivatives (da Silva et al., 2005a,b, 2006).

(I)

In compound (I), the 1,3-dioxane-4,6-dione ring exhibits an envelope conformation with atom C 9 in the flap position. The $\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 7$ torsion angle and the $\mathrm{C} 1-\mathrm{N} 2$ and $\mathrm{C} 6-\mathrm{C} 7$ distances (Table 1) indicate electron delocalization between the two rings. The delocalization of the N -atom lone pair into the ring of Meldrum's acid may be favoured in the direction of

Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. Only one of the two disordered sets of H atoms of the methyl group C11 is shown.

Received 18 July 2006
Accepted 21 July 2006
\qquad
one of the two available carbonyl groups, $\mathrm{C} 8=\mathrm{O} 3$ and $\mathrm{C} 10=\mathrm{O} 4$ (Blake et al., 2003).

The H atom of the NH group forms one intra- and one intermolecular hydrogen bond to the carbonyl atom O4. One intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is also observed. Details of the hydrogen bonding are given in Table 2 and shown in Fig. 2.

Experimental

The title compound was prepared according to the literature procedure of Cannon et al. (2001) and was recrystallized from methanol (m.p. 434 K ; yield 80%).

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=262.26$
Monoclinic, C2/c
$a=17.101$ (1) A
$b=7.354$ (1) \AA
$c=21.375$ (2) \AA
$\beta=91.868(9)^{\circ}$
$V=2686.7(5) \AA^{3}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega / 2 \theta$ scans
Absorption correction: none
3300 measured reflections
2394 independent reflections

$$
\begin{aligned}
& Z=8 \\
& D_{x}=1.297 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} \mathrm{~K} \mathrm{\alpha} \text { radiation } \\
& \mu=0.82 \mathrm{~mm}^{-1} \\
& T=299(2) \mathrm{K} \\
& \text { Needle, colourless } \\
& 0.50 \times 0.10 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0788 P)^{2}\right.$
$+0.4614 P$]
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.040$ 。
$\Delta \rho_{\text {max }}=0.18 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
(Sheldrick, 1997)
Extinction coefficient: 0.0045 (3)
Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 1$	$1.328(2)$	$\mathrm{N} 2-\mathrm{C} 1$	$1.423(2)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.344(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.372(2)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 7$	$178.15(15)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H2N $\cdots \mathrm{O} 4$	0.86	2.15	$2.7683(18)$	128
$\mathrm{~N} 2-\mathrm{H} 2 N \cdots \mathrm{O} 4^{\mathrm{i}}$	0.86	2.46	$3.2652(18)$	155
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.51	$3.335(2)$	148

[^1]

Figure 2
The molecular packing of (I), with hydrogen bonds shown as dashed lines. Only one of the two disordered sets of H atoms of the methyl group C11 is shown.

All H atoms were included in the riding-model approximation, with $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}$ in the range $0.93-0.96 \AA$. Isotropic displacement parameters were set equal to $1.2 U_{\text {eq }}$ (parent atom). The methyl group C11 is disordered and was refined with two equally occupied positions rotated from each other by 60°.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1996); cell refinement: CAD-4-PC Software; data reduction: REDU4 (Stoe \& Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank Professor Dr Hartmut Fuess, Technische Universität Darmstadt, for diffractometer time.

References

Blake, A. J., McNab, H. \& Withell, K. (2003). Acta Cryst. E59, o841-o842.
Cannon, D., Quesada, A., Quiroga, J., Insuasty, B., Abonia, R., Hernández, P., Cobo, J., Nogueras, M., Sánchez, A. \& Low, J. N. (2001). Acta Cryst. E57, o180-o181.
Chen, B. C. (1991). Heterocycles, 32, 529-597.
Delfourne, E., Roubin, C. \& Bastide, J. (2000). J. Org. Chem. 65, 5476-5479.
Enraf-Nonius (1996). CAD-4-PC Software. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Silva, L. E. da, Joussef, A. C., Foro, S. \& Schmidt, B. (2006). Acta Cryst. E62, o742-o743.
Silva, L. E. da, Joussef, A. C., Nunes, R. J., Andrighetti-Fröhner, C. R. \& Bortoluzzi, A. J. (2005a). Acta Cryst. E61, o4121-o4122.
Silva, L. E., Joussef, A. C., Nunes, R. J., Andrighetti-Fröhner, C. R. \& Bortoluzzi, A. J. (2005b). Acta Cryst. E61, o4252-o4253.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (1987). REDU4. Version 6.2c. Stoe \& Cie GmbH, Darmstadt, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

[^1]: Symmetry code: (i) $-x,-y+2,-z$.

